天主教道明中學第109學年度第一學期第二次段考國三數學科試題

範圍:第五冊 2-2~3-2 課本習作

一:單選題

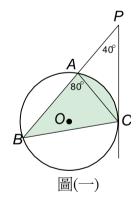
設 D點在 $\angle BAC$ 的平分線,下列有一個條件不能決定 $\triangle ABD \cong \triangle ACD$ 這個條件是

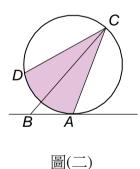
- (A) $AB = \overline{AC}$ (B) $\angle ABD = \angle ACD$ (C) $BD = \overline{CD}$ (D) $\angle ADB = \angle ADC$
- 如下圖(-), PC 與圓 O相切於 C點, PB 與 圓 O相交於 $A \cdot B$ 兩點。若 $\angle P = 40^{\circ}$, 2.. $\angle BAC = 80^{\circ}$, 求: $\angle B$ 的度數=?

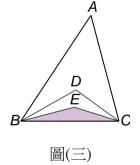
(A) 30° (B) 40° (C) 50° (D) 60° \circ

如下圖(二), \overrightarrow{AB} 與圓相切於 A 點, \overrightarrow{BC} 平分 $\angle ACD$ 。若 \widehat{ADC} =220°, \widehat{AD} =100°, 3. $M \angle ABC = ?$

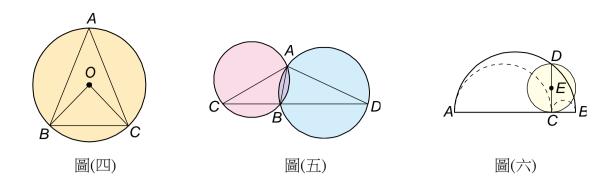
- (A) 40° (B) 45° (C) 50° (D) 55°
- 4. 已知 O點為 $\triangle ABC$ 的外心,若 $\angle A$: $\angle B$: $\angle C$ =3:5:12,則 $\angle AOB$ =? (A) 120° (B) 135° (C) 144° (D) 150° \circ
- 5. 如下圖(三),已知 $\angle BEC=147^{\circ}$, $\triangle ABC$ 的內心為D點, $\triangle DBC$ 的內心為E點,則 $\angle A=?$ (A) 48° (B) 50° (C) 52° (D) 60° \circ



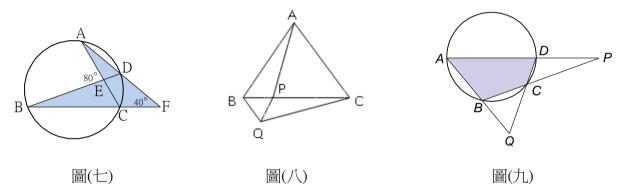




- 如下圖(四),圓 O的內接等腰 $\triangle ABC$ 中, $\overline{AB} = \overline{AC}$ 。若 $\angle A + \angle BOC = 132^{\circ}$,則 $\angle ABO = ?$ (A) 22° (B) 48° (C) 38° (D) 68°
- 如下圖 (Ξ) ,兩圓交於 $A \times B$ 兩點,過 B 點的直線分別與兩圓各交於 C 點和 D 點。已知 $\widehat{BC}=110^{\circ}$, $\widehat{ABC}=170^{\circ}$,求 \widehat{ABD} 的度數=? (A) 100° (B) 150° (C) 190° (D) 200° \circ
- 8. 如下圖(六),是以 \overline{AB} 、 \overline{AC} 、 \overline{BC} 為直徑作半圓的圖形。已知D點在半圓上,作 $\overline{CD} \perp \overline{AB}$,若 AC = 9、 BC = 4 ,以 CD 為直徑作圓 E ,則圓 E 面積=?
 - (A) 5π (B) 7π (C) 8π (D) 9π °

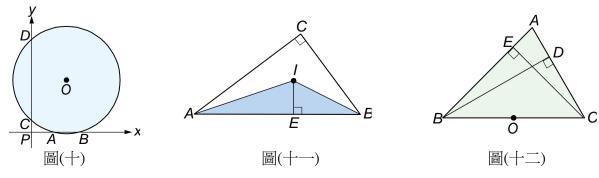


- 9. 如下圖(七),F點在圓外, \overline{FA} 與 \overline{FB} 分別交圓於 D點和 C點, \overline{AC} 與 \overline{BD} 交於 E點。 已知 $\angle F$ = 40°, $\angle AEB$ = 80°,求 $\angle B$ 的度數=? (A) 20° (B) 22° (C) 24° (D) 26°。
- 10. 如下圖(八), △ABC與△BPQ均為正三角形,若∠APB=100°,則∠PQC=? (A)20° (B) 30° (C) 40° (D) 50°

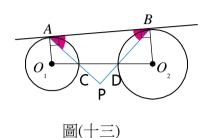


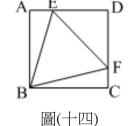
二:填充題(答案請以<u>最簡分數</u>、<u>最簡根式</u>表示)

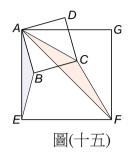
- 1. 如上圖(九),圓內接四邊形 ABCD中, \overrightarrow{AD} 與 \overrightarrow{BC} 交於 P點, \overrightarrow{AB} 與 \overrightarrow{CD} 交於 Q點。 若 $\angle P$ = 25°, $\angle Q$ = 55°,求 $\angle A$ = (1) 度。
- 2. 如下圖(十),已知 P(0,0)、圓 O與 x 軸交於 A(3,0)、B(6,0) 兩點,且與 y 軸交於 C(0,2)、D 兩點。求圓心 O坐標 (2)。
- 3. 如下圖(十一),在直角 $\triangle ABC$ 中, $\angle C=90^\circ$, $\overline{AC}=16$, $\overline{BC}=12$ 。若 I點是 $\angle CAB$ 、 $\angle CBA$ 角平分線的交點,則 $\overline{IE}=$ (3) 。
- 4. 如下圖(十二), \overline{BD} 、 \overline{CE} 是 $\triangle ABC$ 的高。O點為 \overline{BC} 的中點,若以 \overline{BC} 為直徑之圓 O面積為 64π ,則 \overline{OD} $+\overline{OE}$ = ____(4)___。



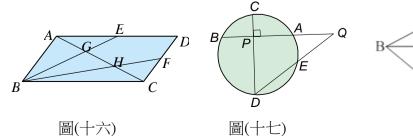
- 5. 如下圖(十三), \overrightarrow{AB} 為圓 O 與圓 O 的外公切線,其中 A、B 兩點為切點,連心線段 $\overline{O_1O_2}$ 與 兩圓分別交於 C、D 兩點。若 \overrightarrow{AC} 與 \overrightarrow{BD} 交於 P點,又 $\overline{AP}=6$, $\overline{BP}=8$ 則 P到 \overrightarrow{AB} 的距離= (5) 。
- 6. 如下圖(十四),ABCD是正方形,邊長為 1, $\triangle BEF$ 為正三角形,求 $\overline{DE} = \underline{\hspace{1cm}}$ (6) ____。
- 7. 如下圖(十五),已知兩個正方形 ABCD 與 AEFG, 若 $\triangle ABE$ 面積=a,則 $\triangle ACF$ 面積= (7)

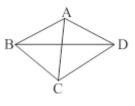




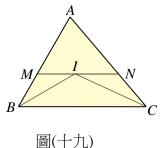


- 8. 已知鈍角三角形的邊長分別為 $6 \cdot 6$ 與 $6\sqrt{3}$,則其外接圓半徑= $\underline{\hspace{0.4cm}}$ (8) $\underline{\hspace{0.4cm}}$ 。
- 9. 若 $m \cdot n$ 皆為正整數,且 m > n,若 m + n = a,m n = b,mn = c,則以 $ab \cdot 2c$ 為兩股的直角 三角形斜邊長=___(9)___。(請以 $m \cdot n$ 表示)
- 10. 如下圖(十六), \square ABCD中,E、F兩點分別是 \overline{AD} 與 \overline{CD} 的中點,連接 \overline{BE} 與 \overline{BF} ,分別 與 \overline{AC} 交於 G、H兩點,若 $\triangle AGE$ 的面積為 a,則 \square ABCD的面積= ___(10)___。
- 11. 直線 12x+5y=60 與 x 軸交於 A 點,與 y 軸交於 B 點。若 O 為原點,I 點為 $\triangle AOB$ 的內心,則 $\triangle AIB$ 的面積= (11) 。
- 12. 圓 O是正 $\triangle ABC$ 的外接圓,若圓 O的面積為 $\frac{16}{3}\pi$,則 $\triangle ABC$ 的面積=___(12)___。
- 13. 如下圖(十七),兩弦 \overline{AB} 與 \overline{CD} 垂直於圓內一點 P,兩弦 \overline{AB} 與 \overline{DE} 的延長線相交於圓外一點 Q。 已知 $\overline{PA}=4$, $\overline{PB}=3$, $\overline{PC}=2$, $\overline{QA}=4$,求 ΔAEQ 面積=___(13)___。
- 14. 如下圖(十八),在同一平面上,若 $\overline{AB} = \overline{AC} = \overline{AD}$,若 $\angle ABC = 67^{\circ}$,則 $\angle BDC = \underline{\quad (14) \quad }$ 度。
- 15. 如下圖(十九),I點是 $\triangle ABC$ 的內心, \overline{MN} 通過 I點,且平行於底邊 \overline{BC} ,若 \overline{AB} = 8, \overline{AC} = 10, \overline{BC} = 12,求 \overline{MN} = (15) 。



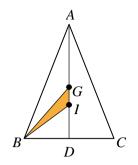


圖(十八)



三:計算題(共15分,須有計算過程及答,否則不予計分)

- 1. 若 a > 0, b > 0, 試證明 $\sqrt{a} + \sqrt{b} \sqrt{a+b} > 0$ 。
- 2. 如右圖, $\triangle ABC$ 為等腰三角形,邊長分別為 17、17、16。若 I點為內心, G點為重心,則:
 - (1) 內切圓半徑=?
 - (2) △BIG的面積=?

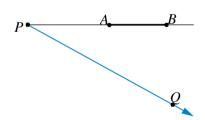


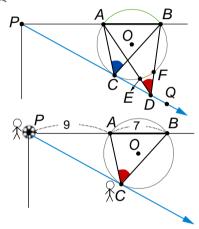
3. 2022年國際足總世界盃,將於 2022年11月21日至12月18日在<u>卡達</u>舉行。 <u>卡達</u>,成為繼<u>日本、韓國</u>後,第三個主辦世界盃足球賽的亞洲國家,也是首個主辦的伊斯蘭 國家。2019年6月14日統計,<u>中華台北</u>目前亞洲排名23,世界排名125。 閉幕時,個人最高榮譽獎就是『**世界盃金靴獎**』(<u>英文</u>: Adidas Golden Boot),是<u>國際</u>

上總授予每屆世界盃決賽階段進球數最多的球員的榮譽。目前最高紀錄是 13 球。 而影響進球的因素,除了個人的技術外,射門的角度也非常重要。

如右圖,設 \overrightarrow{PQ} 為傳球路線, \overrightarrow{AB} 代表球門,圓O通過A、B P• 兩點,且與 \overrightarrow{PQ} 相切於C點,D點為 \overrightarrow{PQ} 上異於C的點。

- (1) 請<u>簡述</u>,為何在 C點有最大射角 ? (請以 D點做比較) (1%)
- (2) 如右圖,若球門寬 \overline{AB} = 7 公尺,<u>耀隆</u>校長站在邊線上 P點 離球門距離 \overline{PA} = 9 公尺,<u>耀隆</u>校長從 P點傳球給<u>葉子</u>老師,試問<u>葉子</u>老師要離 P點多遠射門會有最大射角呢?(2%)
- (3) 請以尺規作圖,在 \overrightarrow{PQ} 上找到最大射角 C 的位置(2%)





天主教道明中學第109學年度第一學期第二次段考國三數學科答案紙

一、單選題:

	1	2	3	4	5	6	7	8	9	10
٠	С	В	В	С	A	A	С	D	A	С

二、填充題: (所有答案須化到最簡,否則不予計分)

3,70,4	日水水门口和	D V1.1. 1 01 70 7			
1	2	3	4	5	
50	$(\frac{9}{2},\frac{11}{2})$		16	$4.8 (\frac{24}{5})$	
6	7	8	9	10	
$\sqrt{3}-1$	2 <i>a</i>	6	m^2+n^2	12 <i>a</i>	
11	12	13	14	15	
13 $4\sqrt{3}$		132 25	23	36 5	

三、計算題: (共15分,須有計算過程及答,否則不予計分。)

1.pf: $(\sqrt{a} + \sqrt{b})^2 = a + 2\sqrt{ab} + b$ $(\sqrt{a+b})^2 = a + b \cdot \cdot \cdot \cdot 1\%$

 $\therefore (\sqrt{a} + \sqrt{b})^2 - (\sqrt{a+b})^2 = 2\sqrt{ab}$

>0 · 1%

 $\therefore (\sqrt{a} + \sqrt{b})^2 > (\sqrt{a+b})^2 \cdot \cdot \cdot 1\%$

 $\therefore a>0, b>0 \cdot \cdot \cdot \cdot 1\%$

故 $\sqrt{a} + \sqrt{b} > \sqrt{a+b}$

$$\sqrt{a} + \sqrt{b} - \sqrt{a+b} > 0 \cdot \cdot \cdot \cdot 1\%$$

Z.

 $(1)2\% \frac{24}{5}$

 $(2)3\% \frac{4}{5}$

- 3. (1)1% $\angle ADB = \frac{1}{2} (\widehat{AB} \widehat{EF}) < \frac{1}{2} \widehat{AB} = \angle ACB$
- 3.(2)2% 12公尺

3. (3)2%

